Scalable Approaches for Supporting MPI-IO Atomicity

Abstract

Scalable atomic and parallel access to noncontiguous regions of a file is essential to exploit high performance I/O as required by large-scale applications. Parallel I/O frameworks such as MPI I/O conceptually allow I/O to be defined on regions of a file using derived datatypes. Access to regions of a file can be automatically computed on a perprocessor basis using the datatype, resulting in a list of (offset, length) pairs. We describe three approaches for implementing lock serving (whole file, region locking, and byterange locking) and compare the various approaches using three noncontiguous I/O benchmarks. We present the details of the lock server architecture and describe the implementation of a fully-functional prototype that makes use of a lightweight message passing library and red/black trees.

Publication
Sixth IEEE International Symposium on Cluster Computing and the Grid, 2006. CCGRID 06